POLICY PERSPECTIVES

An Evaluation Framework for Funding Drugs for Rare Diseases

Eric Winquist, MD, MSc1,*, Chaim M. Bell, MD, PhD2,3, Joe T.R. Clarke, MD4,5, Gerald Evans, MD6, Janet Martin, PharmD, MSc2, Mona Sabharwal, PharmD7, Anita Gadkok, BScPharm, MBA8, Helen Stevenson, BComm, MSM7, Doug Coyle, PhD8

1London Health Sciences Centre and Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; 2Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada; 3Departments of Medicine and Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada; 4Hospital for Sick Children, Toronto, ON, Canada; 5Centre Hospitalier Universitaire, Sherbrooke, QC, Canada; 6Kingston General Hospital and School of Medicine, Queen’s University, Kingston, ON, Canada; 7Ontario Public Drug Programs, Ontario Ministry of Health and Long-term Care, Toronto, ON, Canada; 8University of Ottawa, Ottawa, ON, Canada

ABSTRACT

Objectives: For rare diseases it may be difficult to generate data from randomized trials to support funding of a drug. Enzyme replacement therapies for diseases of inherited metabolic enzyme deficiency provide an example of this dilemma. The Ontario Public Drug Programs convened the Drugs for Rare Diseases Working Group to develop a policy for assessing these drugs. Methods: The Drugs for Rare Diseases Working Group developed terms of reference expecting that the ideal policy product would be transparent and consistent and address unique aspects of the treatment of a specific rare condition while being adaptable to other dissimilar conditions. The perspective was that of a public payer addressing requests for funding generated for a specific drug, and included respect for the principles of “accountability for reasonableness” of Daniels and Sabin. Results: A seven-step framework was developed and tested by using the case study of idursulfase for mucopolysaccharidosis II (Hunter disease). Estimation of clinical effectiveness was done by using decision modeling. The model developed informed funding recommendations and ultimately led to an agreement with the manufacturer allowing funding of idursulfase in Ontario. Conclusions: This policy framework attempts to address the policy challenges of funding drugs for rare diseases. The framework will be used to assess other drugs in future and will inevitably require modification with experience. It is hoped that it may be of value to other policymakers.

Keywords: cost-effectiveness, drug reimbursement, health policy, glycosaminoglycan storage disease, mucopolysaccharidosis.

Copyright © 2012, International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc.

Introduction

In this article, we describe the development of a unique, evidence-based framework for the evaluation of drugs intended for the treatment of rare diseases. This framework was developed at the request and with the support of the Ontario Public Drug Programs of the Ministry of Health and Long-term Care in the province of Ontario, Canada. The purpose of the evaluation framework is to provide guidance for public drug-funding policy from the payer perspective. The framework consists of seven evaluative steps, each prerequisite for those that follow, and include steps of modeling of both effectiveness and cost-effectiveness. The evaluation framework was tested by using the case study of idursulfase for Hunter disease, and this is provided by way of example.

Background

Over the past decade, expensive enzyme replacement therapies for rare inherited metabolic enzyme deficiencies have emerged. These drugs are among the most expensive in the world (Table 1) and have created dilemmas for public drug payers [1–3]. Typically, data from adequately powered randomized clinical trials are required for both regulatory approval and public funding of most new drugs in Canada, which is decided at the provincial level. Escalating health care costs have led to greater provincial scrutiny of drug expenditures and increasing consideration of the cost of a drug to inform drug-funding decisions [4]. An approach considering health gain, incremental cost-effectiveness, and global budget impact has been adopted in Ontario.

To assess cost-effectiveness adequately as a part of such a process requires adequate information about the effectiveness of a new drug from randomized trials, and for rare conditions, such information is often limited, inadequate, or absent. There is little guidance available in the published literature or from other jurisdictions to guide the evaluation of drugs for funding in such situations [5]. The Canadian provinces and territories have attempted to develop a national strategy, but in the absence of a funding commitment from the federal government, this work has stopped, and so provincial funding recommendations considering efficacy and value for money in a conventional manner are typically negative [6].

The Ontario Public Drug Programs was formally established in April 2007, led by an Executive Officer who is invested with author-

* Address correspondence to: Eric Winquist, London Health Sciences Centre, 790 Commissioners Road East, London, ON, Canada N6A 4L6.

E-mail: eric.winquist@lhsc.on.ca.

1098-3015/$36.00 – see front matter Copyright © 2012, International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jval.2012.06.009
ity that previously resided with Cabinet and the Minister of Health, including the mandate to administer Ontario’s $4.1 billion publicly funded drug programs [7]. The Committee to Evaluate Drugs (CED) makes recommendations for drug funding to the Executive Officer on the basis of clinical, safety, and cost-effectiveness data. Consistent with recommendations from the Canadian Drug Expert Committee, the CED had recommended against funding idursulfase for Hunter disease because it did not satisfy the usual criteria for clinical benefit and cost-effectiveness [6]. However, adherence to such criteria could appear unfair to patients stricken with a disabling and sometimes fatal condition, and who are often infants or children [8]. In view of the varied approaches taken in other Canadian provinces to the funding of idursulfase for Hunter disease and in an effort to address public demands fairly, the Executive Officer prioritized the development of a process for reviewing such drugs for funding in a fair, transparent, and consistent way.

A “Drugs for Rare Diseases Working Group” was created consisting of nine members selected by the Executive Officer: three representatives from the Ontario Ministry of Health and Long-term Care (the Executive Officer and two pharmacists), four members of the CED (two physicians, a pharmacist, and a health economist), and two other individuals, one with formal pharmacoeconomic training and an expert in the treatment of inherited disorders of metabolism in children. An ethicist was consulted ad hoc during the process.

Development of the Framework

The Drugs for Rare Diseases Working Group had broad latitude to develop its own terms of reference and process. Several principles formed the basis of the development process. First, there was an expectation that the resulting policy product would be transparent and consistent and address the unique aspects of treatment of a specific rare condition while being adaptable to other rare but dissimilar conditions in future. Second, it was recognized that expert input was crucial and that the framework developed that addressed specific areas of uncertainty related to drugs identified for adoption, and so a seven-step framework was developed to conduct randomized trials in conditions that were similar but not identical. These included the following: Is the condition truly rare? Is it logical that patients could benefit from the treatment? What is the potential value of the treatment and to whom? It was also recognized that expert input was crucial and that the framework should be responsive to accumulating knowledge about the disease.

Step 1: Confirm the condition for treatment with the candidate drug is truly “rare”

In the context of this framework, it was considered of critical importance to define what constituted “rare.” It was agreed that the existence of such a policy process should not diminish the motivation to conduct randomized trials in conditions that were simply uncommon or difficult to study. Rare health conditions have been defined as liberally as a population prevalence of 1/1500 [10]. As well, with improved case finding and international collaboration, public priority-setting needs to be respected. These provide ethical guidance for making difficult decisions under constrained resources and include four domains: Publicity (decisions to limit health care and their rationales must be publicly accessible), Relevance (the rationales invoked must be based on evidence, reasons, and principles that fair-minded persons would affirm), Appeals (mechanisms for challenging allocation decisions must exist), and Regulation (public procedures must ensure the fulfillment of these three conditions). Appeal of drug-funding decisions in Ontario is available through the office of the Executive Officer.

Policy Framework

No acceptable processes developed by other jurisdictions were identified for adoption, and so a seven-step framework was developed that addressed specific areas of uncertainty related to drugs for rare diseases that emerged early in Working Group discussions (Fig. 1). These included the following: Is the condition truly rare? Is it logical that patients could benefit from the treatment? What is the potential value of the treatment and to whom? It was also recognized that expert input was crucial and that the framework should be responsive to accumulating knowledge about the disease.

![Fig. 1 – Policy framework for funding drugs for rare diseases.](image-url)
controlled trials are generally considered the gold standard of evaluation when evaluating the efficacy of a new drug technology. If randomized trials reporting clinically relevant outcomes were available and considered adequate to assess clinical effectiveness, then review using this framework would not be necessary; however, if not, then the use of this framework would be appropriate. All relevant and accessible clinical data are considered. Surrogate end points should be scrutinized for validity at this step [13,14]. Where clinical data are sparse or questionable, the criteria described by Bradford Hill [15] for assessing causation between an exposure and a disease were adapted for use as a guide and to screen interventions at this step. Adaptation of these to therapy requires one to consider the candidate drug the “exposure” and the beneficial effects of this treatment as the “disease” (Table 2). Bradford Hill did not intend either that his criteria provide proof of causality or be used as a checklist. In this case, the purpose of using these criteria is to assist in answering the fundamental question: Is there any other way of explaining the effects seen in patients treated other than the drug? A candidate drug not considered potentially “causal” of tangible patient benefits should be removed from further consideration at this step.

Step 4: Model the potential clinical effectiveness of the candidate drug
From the data identified in step 3, clinical effectiveness can be estimated by modeling by using clearly described methods including estimates of the variability of treatment effects and acknowledgment of the limitations of the data and techniques used. Decision modeling adopting a Bayesian perspective has some appeal in this setting as it allows the synthesis of data of different degrees of quality emanating from alternative sources. Other techniques to estimate a candidate drug’s treatment effect, however, may be quite reasonable and appropriate.

Step 5: Evaluate cost implications and generate a funding recommendation
Once estimates of clinical effectiveness are available, cost-effectiveness can be theoretically calculated by using conventional techniques, such as cost minimization, or incremental costs per
life-year or quality-adjusted life-year gained. In Ontario, the CED generally considers drugs to be cost-effective if the cost per quality-adjusted life-year gained is in the range of $40,000 to $60,000 or less, a threshold acknowledged as unlikely to be useful or achievable for most expensive drugs developed for the treatment of rare diseases. Estimation of budget impact, however, may be of particular importance at this step. The cost data generated can also be used to inform individual or group funding decisions, more precisely define the “funded” population, develop a budget for a rare disease portfolio, and identify areas for risk sharing to support price negotiations.

Step 6: Review the drug evaluation with disease experts and stakeholders

As the proposed process is unique, complex, and variable with the disease and drug under consideration, it is considered essential that independent disease experts not involved in the Working Group review the inputs, assumptions, and outputs to detect areas of significant disagreement or error. This helps to ensure validity of any modeling used. It is also essential that experts and other stakeholders including the public understand the process to facilitate acceptance of its conclusions.

Step 7: Reassessment

It is important to continuously review and incorporate new information regarding disease incidence, natural history, and the effectiveness or cost of candidate drug therapy. Potential impact on modeled effectiveness and/or cost-effectiveness estimates should trigger reanalysis with incorporation of the new data.

Test of the Framework

The evaluation framework was tested by evaluating idursulfase for mucopolysaccharidosis II (Hunter disease). Hunter disease has an estimated incidence of 1 in 170,000 male live births (1 to 2 births per year in Ontario), meeting criteria for a rare disease for public-funding purposes in Ontario [16] (step 1). It is an X-linked disorder caused by a deficiency of the lysosomal enzyme iduronate-2-sulfatase resulting in the accumulation of glycosaminoglycans in tissues and organs, causing the signs and symptoms of the disease [16]. Multiple organs are affected, and both age of onset and rate of progression are variable. Traditionally, Hunter disease patients have been categorized into two types: patients with type A, who have severe primary neurological involvement, which inevitably culminates in death by the end of the second decade of life, and patients with type B, who do not have primary neurological involvement and have reduced life expectancy because of the increased risk of respiratory, cardiac, and cardiorespiratory complications of the disease (step 2).

Idursulfase therapy replaces iduronate-2-sulfatase and satisfies eight of the nine modified Bradford Hill criteria (Table 2), confirming the potential of benefit to patients with Hunter disease. Clinical data have not shown benefit of idursulfase in patients with type A Hunter disease, supporting an approach focused on identifying and treating patients with type B Hunter disease (step 3). One available randomized trial had been reviewed by the CED and was considered inadequate to assess clinical effectiveness [6]. Review of the natural history of Hunter disease and effects of treatment with idursulfase led to agreement with this recommendation against routine use as palliative therapy in patients with advanced multisystem disease. Idursulfase was considered potentially able to arrest or prevent multisystem morbidity and possibly even prolong life if initiated when disease effects were minimal early in childhood. It was also acknowledged that patients destined to develop severe neurological involvement would be unlikely to benefit significantly from therapy. A Markov modeling approach was developed to generate a model of the natural history of the disease incorporating estimates of small, moderate, and large effects of idursulfase therapy (Fig. 2) [17]. This demonstrated that idursulfase might lead to prolonged life expectancy for patients with type B Hunter disease (step 4). For example, if idursulfase treatment reduced disease progression by 10%, 20%, and 50%, life expectancy gains of 1.32, 2.93, and 10.66 years, respectively, were observed for a 12-year-old patient with type B Hunter disease with only musculoskeletal symptoms. However, the same treatment resulted in life expectancy gains of only 0.03, 0.06, and 0.16 years, respectively, for an 11-year-old patient with type A Hunter disease with severe neurocognitive and respiratory problems. The per-patient cost of idursulfase is in the range of $375,000 per year. Detailed cost analysis was not done because the drug was not considered cost-effective by conventional criteria even in the most extreme model scenarios. However, the potential life expectancy gains in type B patients were considered highly valued. This was reviewed and approved by the Executive Officer, and a funding algorithm was developed for negotiation with the manufacturer (step 5). A review of the Markov model by content expert physicians was conducted. This led to revision of some assumptions and general approval of the process and its results. The framework was also presented to and approved by the Ontario Public Drug Programs Citizens’ Council (step 6). Negotiations with the manufacturer led to the public funding of idursulfase in Ontario for patients 6 years or older without neurocognitive symptoms, while the manufacturer manages requests for funding for patients younger than 6 years of age in whom the potential effects on life expectancy were far less certain [18]. This has provided an estimate of the annual cost of idursulfase to Ontario Public Drug Programs prioritized to those patients most likely to benefit. No new information informing the model has been identified to date (step 7).
Discussion

Our evaluation framework has a number of limitations. It assumes the availability of adequate information about disease incidence and natural history. This may not always be the case. For the case study used to test the framework, a Bayesian approach using Markov modeling was employed to estimate ranges of clinical effectiveness on the basis of outcomes and clinical scenarios not studied in clinical trials. Critics of such an approach might suggest that such estimates are highly speculative and prone to error. However, we feel that this approach is defensible, because it is based on the most contemporary data and expert opinion available relevant to the disease, utilizes reasonable expectations of effectiveness at a point in the disease process when these are most likely to be realized, and can be adapted and updated to include new data about the disease and drug as this information becomes available.

The dilemma of funding drugs for rare disease is not unique to Ontario, and a number of strategies have been proposed [19]. The US Orphan Drug Act provides incentives for pharmaceutical companies to develop drugs; however, individual patients are left to rely on public or private reimbursement programs that are likely not to fund the drugs because of limited evidence and high cost. It has been argued that a more utilitarian approach should be used when it comes to orphan drugs and that rarity of a disease is a limited justification. For example, in the United Kingdom, the primary care trusts of West Midlands commissioned a report on the ethical issues, clinical efficacy, cost-effectiveness, and public perspective on whether to reimburse patients with Fabry disease and other rare diseases for the costs of treatment [20]. It was agreed that rarity was not significant enough a factor to override all other considerations in developing a decision. As a principled argument could not be made to distinguish patients with rare diseases from those with common diseases who also had unmet treatment needs, along with poor cost-effectiveness, the trust denied reimbursement of treatments for Fabry disease and also discontinued reimbursement of treatment for new cases of Gaucher disease. A balance between pure utilitarianism based on cost-effectiveness and patient nonabandonment must be struck, but how this should be done in an evidence-based public health context is uncertain [19].

Conclusions

Our evaluation framework attempts to systematically address the many challenges raised when considering funding new drugs for rare diseases—many of which are expensive—within an evidence-based publicly funded drug program. If it is accepted that it is truly impractical to perform adequately powered randomized clinical trials, then we believe that funding decisions must be addressed in a consistent, fair, and transparent manner. In the case study we have described, modeling of effectiveness supported potential benefits including prolonged life expectancy in a subgroup of patients. This advice led to a unique funding algorithm for this drug in Ontario. This framework is an iterative process that inevitably will require modification with experience. Feedback will be obtained through a series of meetings with patient, physician, and stakeholder groups, the pharmaceutical industry, and other interested parties. This evaluation framework attempts to identify an evidence-derived “middle ground” that is an improvement over arbitrary decisions based on either the absence of specific data or political expediency. It is hoped that it can be of value for the assessment of other drugs in future; however, it cannot be considered a cipher for uncritical assignment of drug therapy.

Source of financial Support: The development of this framework was supported by public funding from the Ontario Public Drug Programs of the Ministry of Health and Long-term Care of the Province of Ontario, Canada.

REFERENCES